

Home Search Collections Journals About Contact us My IOPscience

A nonequilibrium synchrotron X-ray study of a liquid crystal phase transition under shear flow

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 SA365

(http://iopscience.iop.org/0953-8984/2/S/057)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 27/05/2010 at 11:17

Please note that terms and conditions apply.

# A non-equilibrium synchrotron x-ray study of a liquid crystal phase transition under shear flow

C R Safinya<sup>†</sup>, E B Sirota<sup>†</sup>, R Plano<sup>†</sup> and R F Bruinsma<sup>‡</sup>

 $^{+}$  Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801, USA

‡ Department of Physics, University of California, Los Angeles, CA 90024, USA

Abstract. We report on synchrotron x-ray studies of the nematic (N) and the smectic-A (SMA) phases under non-equilibrium 'steady state' shear flow conditions. Under shear, the presence of SMA fluctuations leads to a novel flow-induced fluctuation force on the nematic director  $\hat{n}$  which alters its equation of motion. This leads to rich behaviour where the nematic phase exhibits a sequence of regimes in which the orientational phase space (OPS) explored by  $\hat{n}$  evolves as the N-SMA transition is approached. We directly observe the critical slowing down of the SMA order parameter fluctuations through the x-ray profiles, which give the intensity map of the time- and space-averaged OPS traversed by  $\hat{n}$ . Our data are consistent with the classical Ericksen–Leslie–Parodi theory of nematodynamics away from the immediate vicinity of the N-SMA transition temperature. Closer in, however, fluctuation effects dominate and a model of critical nematodynamics has to be considered. The experiments demonstrate that synchrotron scattering techniques may be used as effective structural probes of dynamical systems.

#### 1. Introduction

The simplest liquid crystalline phases are the nematic (N) and smectic-A (SMA) phases. In the nematic phase, the rod-shaped molecules exhibit orientational order and point, on average, along a unique direction specified by a unit vector  $\hat{n}$  called the director (see figure 1, lower part). The N-SMA transition corresponds to the onset of a one-dimensional mass density wave along the direction of  $\hat{n}$ . At equilibrium, the pretransitional SMA fluctuation clusters, which are measured by x-rays, grow in the nematic phase as one approaches the N-SMA transition and are ultimately responsible for the ordered SMA phase [1].

Using a high-resolution x-ray scattering spectrometer we have studied the microscopic structure of the nematic and SMA phases in 4-cyano-4'-octylbiphenyl (8CB) under non-equilibrium steady-state shear flow conditions. The presence of large fluctuations under shear flow leads to a novel flow-induced fluctuation force on the nematic director which then alters the equation of motion of  $\hat{n}$  [2, 3]. We find that under shear flow as a function of decreasing temperature, the nematic phase exhibits a series of regimes where the orientational phase space (OPS) explored by  $\hat{n}$  evolves as the N-SMA transition is



**Figure 1.** *Top*: (left) Couette x-ray shear cell; (right) simple shear flow field. *Bottom*: Three simple shear flow geometries for  $\hat{n}$ , with associated viscosities. For the *c* orientation, we show a SMA fluctuation cluster of size  $\xi$ .

approached. More specifically, the x-ray profiles which map out the time- and spaceaveraged OPS traversed by  $\hat{n}$ , allow us to observe directly the consequences of the flowinduced fluctuation force which are (i) the renormalization of one of the shear viscosities  $\alpha_3$ , and (ii) the onset of a friction term which dampens the motion of  $\hat{n}$  and keeps it confined to a plane normal to the flow direction. The renormalization of  $\alpha_3$  is directly due to the divergence of the fluctuation relaxation time  $\tau$ , which corresponds to the critical slowing down of the SMA order parameter fluctuations.

## 2. Experimental details

Figure 1 shows the Couette x-ray shear cell consisting of two concentric cylinders where the outer cylinder rotates and the inner is fixed. A top view of the cell and the flow field (with shear rate  $\dot{\gamma}$ ) experienced by the liquid crystal is shown in the top right of figure 1. The cell is temperature controlled to within  $\pm 5$  mK. The important distinguishing feature of our x-ray Couette cell is that it is sealed so that we are able to tilt and rotate the cell and map out the x-ray structure factor both in the shear plane and out of the shear plane. The details of the x-ray shear cell are described in a separate paper [4]. The experiments were conducted at the National Synchrotron Light Source (NSLS) on the Exxon beam line X-10A.

The three simple geometries that the nematic direction  $\hat{n}$  may assume (bottom of figure 1) are referred to as the a, b and c orientations where each has an associated viscosity. The flow direction is along  $\hat{b}$ , the shear  $(\nabla v)$  direction along  $\hat{c}$ , and the neutral direction along  $\hat{a}$ .

## 3. Results

Figure 2 shows the shear rate versus temperature phase diagram and the rich sequence of regimes discovered in the nematic phase. At equilibrium for zero shear, 8CB



**Figure 2.** Shear rate versus temperature phase diagram for 8CB. The nematic shows six regimes distinguished by the orientational phase space explored by  $\hat{n}$  (shown schematically for four regimes at the top). The SMA phase shows two regimes.

exhibits an isotropic-to-nematic transition at  $T_{\rm IN} \simeq 40.5$  °C and a N-SMA transition at  $T_{\rm NA} \simeq 33.58$  °C. For finite shear, the evolution across regimes as a function of decreasing temperature is associated with the varying orientational phase space (OPS) explored by  $\hat{n}$  as the flow-induced fluctuation forces grow and alter its equation of motion. At the top of figure 2 we show schematics of the OPS occupied by  $\hat{n}$  for four of these regimes. We now give a brief description of each regime. A more detailed account is published separately [5].

The orientational state of  $\hat{n}$  is determined by the total torques acting on it. Under flow, these include the viscous and elastic torques [6], and the fluctuation torque due to the SMA fluctuation clusters [2, 3]. In our experiments, we are in the high shear limit where elastic torques are negligible. In the classical Ericksen-Leslie-Parodi (ELP) theory of nematodynamic [6], which considers the viscous and elastic torques, the viscosity coefficients  $\alpha_2 (\propto \eta_c)$  and  $\alpha_3 (\propto \eta_b)$  enter the equation of motion of the director  $\hat{n}$  and control the flow orientation of  $\hat{n}$ . (Figure 1 defines  $\eta_c$  and  $\eta_b$ .)  $\alpha_2$  is always negative. Just below the isotropic-to-nematic transition temperature  $T_{\rm IN}$ ,  $\alpha_3$  is negative (with  $|\alpha_3| \ll$  $|\alpha_2|$  and ELP nematodynamics has a stable solution with  $\hat{n}$  lying in the (b-c) flow plane making a small angle  $\theta = \tan^{-1} (\alpha_3/\alpha_2)^{1/2}$  with the *b* axis (this is the **b** region shown in figure 2, just below  $T_{IN}$ ). As temperature is reduced the pretransitional SMA fluctuation clusters are expected to renormalize  $\alpha_3$ , increasing it through zero and towards positive values [2, 3]. For  $\alpha_3 > 0$ , there is no stable solution with  $\hat{n}$  in the (b-c) shear plane. However, there is a solution where no torque is applied with  $\hat{n}$  pointing exactly along the  $\hat{a}$  direction out of the shear plane. This orientation is only marginally stable and if we consider  $\hat{n}$  close to  $\hat{a}$ , where  $\hat{n} = (n_b, n_c, 1)$  with  $n_b, n_c \ll 1$ , the modified ELP nematodynamics [2] (which considers the flow-induced fluctuation forces to lowest order in  $(\gamma \vec{\tau})$  by renormalizing  $\alpha_3$ ), yields a simple equation of motion:

$$\ddot{n}_b + \omega_0^2 n_b = 0$$

$$n_c = (-\gamma_1/\dot{\gamma}\alpha_2)\dot{n}_b$$
(1)

where  $\omega_0^2 = \dot{\gamma}^2 [\alpha_3^R(-\alpha_2)]/\gamma_1$ . Here  $\gamma_1$  is one of the five nematic viscosities and the fluctuation renormalized viscosity is given by

$$\alpha_3^R = \alpha_3 + 4\pi^4 \left(\frac{k_{\rm B}T}{\xi d^2}\right)\tau.$$

(d and  $\xi$  are the layer spacing and correlation size of a fluctuation cluster, as shown in figure 1.) Equation (1) describes a simple coupled harmonic oscillator motion for  $n_b$  and  $n_c$  with precession frequency  $\omega_0$ . Note, however, that because there is no damping term in (1), the solution is marginally stable and  $\hat{n}$  will perform a precessing motion about the a axis but can also wander (due to thermal or hydrodynamic noise) between different amplitude states for  $n_{b0}$  and  $n_{c0}$ . That is, solutions to (1) have the simple precession form  $n_b = n_{b0} \cos \omega_0 t$ ,  $n_c = n_{c0} \sin \omega_0 t$ , with  $n_{b0}/n_{c0} = (-\alpha_2/\alpha_3^R)^{1/2}$ . Thus we expect a regime where  $\hat{n}$  wobbles about the  $\hat{a}$  direction. We see from the phase diagram of figure 2 that our experiments show a crossover from the **b** regime (just below  $T_{\rm IN}$ ), to a marginally stable regime labelled  $a_{\rm m}$ , where in fact, the direction exhibits a wobbly precessing motion with  $\hat{n}$  tipping off the *a* axis. In the intermediate regime labelled *a*-*b*, there are substantial boundary layers with the b orientation. Thus, far away from the immediate vicinity of  $T_{\rm NA}$ , our data are consistent with the modified-ELP model of nematodynamics. However, as we see from figure 2, three other regions (labelled  $a_s$ , a(b) and  $a_c$ ) appear, and we shall see that a recently developed model of critical nematodynamics is in reasonable agreement with much of the data [3].

As we further lower the temperature we cross over from the  $a_m$  to the  $a_s$  regime (s for stable). In this regime,  $\hat{n}$  is confined to a small cone about the  $\hat{a}$  direction which appears to be a stable solution for  $\hat{n}$ . Further lowering of the temperature results in a crossover across two more distinct regimes labelled a(b) and  $a_c$  in figure 2 before the SMA phase is reached. (In the SMA phase,  $\hat{n}$  initially points along the a axis but at lower temperatures crosses into a regime where SMA domains with both the  $\hat{a}$  and  $\hat{c}$  orientations coexist (figure 2).) We now describe the final three regimes in the N phase.

To understand the  $a_s$  regime we need to go beyond the modified-ELP nematodynamics and to consider what we shall call critical nematodynamics, which includes the effects of the flow-induced fluctuation force more completely [3]. In critical nematodynamics the ELP equation of motion (1) is modified with the appearance of a new friction term. The equation of motion then becomes

$$\ddot{n}_b + 1/\dot{\tau}_N n_b + \omega_0^2 n_b = 0$$

$$n_b = -\frac{\gamma_1}{\dot{\gamma} \alpha_3^R} \dot{n}_c$$
(2)

which corresponds to a damped coupled harmonic oscillator equation with damping rate

$$\frac{1}{\tau_{\rm N}} = \frac{\pi^4}{3\gamma_1} \left(\frac{k_{\rm B}T}{\xi d^2}\right) (\dot{\gamma}\tau)^2.$$

Since this is a higher-order term than the precession term, it will become important only in the vicinity of  $T_{\rm NA}$  where fluctuations grow very large and  $\tau$  tends to diverge. For most of the temperature range,  $\omega_0 > 1/\tau_{\rm N}$ . Thus in the  $a_{\rm s}$  regime  $\hat{n}$  undergoes an *undamped* precessing motion and is confined to a small cone about the  $\hat{a}$  direction.



**Figure 3.** Top: (left) Diffuse x-ray spots for  $\hat{n}$  pointing along  $\hat{a}$ ; (right) diffuse x-ray patch of a sphere of radius  $q_0$  due to a corresponding distribution of decreasing temperature (shown for four regimes). The evolution in the elliptical shapes is due to the renormalization of  $\alpha_3^R$  which arises from the critical slowing down of the SMA order parameter fluctuations.

In the a(b) regime, we find a *bulk* coexistence of regions of the sample where  $\hat{n}$  points along  $\hat{a}$  and regions where  $\hat{n}$  points (approximately) along  $\hat{b}$  in the (b-c) shear plane. That is, regions of the sample have *re-entered* the high-temperature b orientation (see figure 2). The existence of a coexistence regime for the temperature range near  $T_{\rm NA}$  where  $\dot{\gamma}\tau(\xi/d) > 1 > \dot{\gamma}\tau$  has been anticipated theoretically, and has been attributed to the anisotropic suppression of SMA fluctuations due to flow [3].

In the final  $a_c$  regime in the nematic phase just above  $T_{NA}$  (figure 2),  $\hat{n}$  points mostly along  $\hat{a}$  but undergoes a non-uniform precessing motion tumbling all the way towards the  $\hat{c}$  direction. We argue below that this behaviour for  $\hat{n}$  arises from the divergence of  $\alpha_3^R/\alpha_2$  as T approaches  $T_{NA}$ . Furthermore, in this regime,  $\hat{n}$  is confined to the (a-c) plane with no  $\hat{b}$  component because of the presence of the friction term (in equation (2)) which applies a torque on  $\hat{n}$ , pushing it towards the (a-c) plane [3].

The growth of the coefficients (e.g.  $\alpha_3^R$ , and the friction term) arising from the flowinduced fluctuation forces, with decreasing temperature, is reflected directly in the xray intensity scattering profiles. For a uniform sample with  $\hat{n} = \hat{a}$ , the x-ray scattering profile gives diffuse spots at  $q = \pm q_0 \hat{n}$  in reciprocal q-space, as shown at the top left of figure 3. Therefore, the diffuse spots *point* along  $\hat{n}$  and give us the orientation of the director. For a distribution of  $\hat{n}$  which is determined by the total forces acting on  $\hat{n}$ , the diffuse scattering would now be on a corresponding 'patch' of a sphere of radius  $q_0$ . (This is shown at the top right of figure 3). The map of the x-ray intensity levels thus is used as a probe of the director orientation distribution function  $W(\hat{n})$ . The x-ray intensity is given by

$$I(\boldsymbol{q}) \sim \int \mathrm{d}n \, \langle W(\hat{\boldsymbol{n}}) \rangle S(\boldsymbol{q}, \hat{\boldsymbol{n}})$$

where  $S(q, \hat{n})$  is the scattering for a given  $\hat{n}$ , and the average  $\langle \rangle$  is over time and space.

To obtain a sensible functional form for the distribution function  $\langle W(\hat{n}) \rangle$ , we consider the equation of motion in the limit where  $\omega_0 \ge 1\tau_N$ , which is correct for most of the nematic range except for T within a few mK of  $T_{NA}$ . Equation (1), which includes the renormalization of  $\alpha_3^R$ , is then a good approximation for the equation of motion of  $\hat{n}$ . This equation describes a simple precession mode:

$$n_b = n_{b0} \cos \omega_0 t \qquad n_c = n_{c0} \sin \omega_0 t$$

which satisfies the equation of an ellipse:

$$n_b^2/n_{b0}^2 + n_c^2/n_{c0}^2 = 1 \tag{3}$$

with

$$n_{b0}/n_{c0} = \left(\frac{-\alpha_2}{\alpha_3^R}\right)^{1/2}$$

the ratio of the axes. The nematic director jumps between different amplitudes  $n_{b0}$ ,  $n_{c0}$  due to noise but always precesses with the same ratio of amplitudes. Thus, a sensible functional form for the distribution function would be

$$\langle W(\hat{\boldsymbol{n}}) \rangle \sim \exp[-(n_b^2 \sigma_b^2 + n_c^2 \sigma_c^2)]$$

with  $\sigma_b/\sigma_c = n_{b0}/n_{c0}$ . Therefore, the x-ray intensity levels should also be elliptical.

Figure 3 shows equal intensity contour plots in the (b-c) shear plane (with  $q_a = q_0$ ), in the four regimes above  $T_{NA}$ . The elliptical shapes are self-evident. As a function of decreasing temperature, in the  $a_m$  regime the major axis is along  $\hat{b}$  since  $\alpha_3^R < -\alpha_2$ , while with increasing  $\alpha_3^R$ , the shape becomes almost circular (figure 3,  $a_s$  regime) and elliptical again (in the a(b) regime) but not with the major axis along  $\hat{c}$  because  $\alpha_3^R > -\alpha_2$ . Finally, the contours become extremely anisotropic in the  $a_c$  regime with  $\alpha_3^R \gg -\alpha_2$ . In this final regime, a small amplitude fluctuation  $n_{bo}$  results in a precession path with a large  $n_{c0}$  amplitude which then causes the director to traverse the (a-c) plane. Large amplitude fluctuations along  $n_{b0}$  are not seen because of the friction term which confines  $\hat{n}$  to the (a-c) plane.

Thus, the x-ray profiles allow us to directly observe the divergence of  $\alpha_3^R \propto \tau/\xi$ , which is directly related to the critical slowing down of the SMA order parameter fluctuations. Over the temperature range spanning the last four regimes, we find that  $\alpha_3^R$  increases by a factor of about 400 [5].

#### 4. Conclusions

In summary, we have seen that the flow-induced fluctuation forces on the nematic director lead to a rich sequence of regimes where the orientational phase space traversed by  $\hat{n}$  evolves as the N-SMA transition is approached. Our data are consistent with the ELP

theory of nematodynamics away from the critical regime. Near  $T_{\rm NA}$ , critical nematodynamics has to be invoked. Finally, the experiments demonstrate that synchrotron scattering techniques may be used as effective structural probes of dynamical systems.

## Acknowledgment

The National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the US Department of Energy.

## References

- Davidov D, Safinya C R, Kaplan M, Dana S S, Schaetzing R, Birgeneau R J and Litster J D 1979 Phys. Rev. B 19 1657
- [2] McMillan W L 1974 Phys. Rev. A 1720 Janig F and Brochard F 1974 J. Physique 35 301
- [3] Bruinsma R F and Safinya C R 1990 Macromolecular liquids C R Safinya, S A Safran and P A Pincus (eds) (Materials Research Society Publishers 177) p 153
   Particus R S Particus C R 1990 Physics Particus (eds) (eds)
- Bruinsma R F and Safinya C R 1990 Phys. Rev. A (submitted)
- [4] Plano R J, Safinya C R and Wenzel L 1990 Rev. Sci. Instrum. (submitted)
- [5] Safinya C R, Sirota E B and Plano R J 1990 Phys. Rev. Lett. (submitted)
- [6] Ericksen J L 1960 Arch. Ration. Mech. Anal. 4 231
   Leslie F M 1966 Quart. J. Mech. Appl. Math. 19 357
   Parodi O 1970 J. Physique 31 581